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hadronic scattering amplitudes in the dipole picture of high energy QCD. We go beyond

the mean field approximation by including fluctuations and also wave function saturation

effects, and the evolution with both a fixed and a running coupling is investigated. We also

study the nonperturbative aspects, and as has been predicted earlier, our results indicate

that the Froissart-Martin bound is saturated once confinement effects are included in the

evolution. Thus the total cross section increases proportional to the square of the logarithm

of the cms energy. Using our proton model developed earlier we furthermore see that we

obtain a reasonable value for the proportionality coefficient. The impact of saturation and

non-leading effects on this coefficient is also studied.
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1. Introduction

The Froissart-Martin (FM) theorem states that hadronic total cross sections must satisfy

σtot(s) ≤ C · ln2(s/s0) as s → ∞, (1.1)

where the coefficient C can be estimated as C ∼ 1/m2
π. The proof of this theorem relies on

some general properties such as the unitarity of the S-matrix, the existence of a mass gap,

and the possibility of using subtracted dispersion relations. Although not strictly proven

within QCD, it is widely believed that this bound should indeed be true for the strong

interactions.

The high energy evolution equations (the Balitsky-JIMWLK, or B-JIMWLK hierarchy)

for the hadronic amplitudes Ts(bbb) were derived in [1], and these equations can also be

described by the Color Glass Condensate (CGC) formalism [2], or, in the large Nc limit,

by the simpler dipole formalism [3]. The solution to these equations exhibits saturation at

each bbb, i.e. Ts(bbb) ≤ 1, with Ts(bbb) = 1 being the black disc limit. This condition is, however,

not sufficient in order to satisfy the FM bound, since the FM bound is relevant for the total

cross section which involves an integration over all bbb. In fact, it is quite obvious that if

one naively takes the solution to the perturbative evolution equations for Ts(bbb), and then

integrates over all bbb to get the total cross section as

σtot(s) = 2

∫

d2bbb Ts(bbb), (1.2)

one will most certainly violate the FM bound, since the interaction is mediated by massless

gluons with a Coulomb like behaviour even at large distances. Indeed for an interaction
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mediated by a massless particle, such as the photon in QED, the coefficient C in (1.1) is

infinite, since mγ = 0.

In this paper we will study the behaviour of hadronic cross sections with respect to

the FM bound. We will use our model developed in [4 – 6], which is based on the QCD

dipole model, to calculate the growth of the total pp cross section. In [5] we have suggested

the dipole swing mechanism in order to take into account the missing saturation effects in

the dipole cascade evolution, and results show that we obtain an almost frame independent

evolution. As we will later discuss in section 2.2, the dipole swing has some similarities

with the saturation mechanism in the CGC formalism. Furthermore, the swing affects the

expansion of the dipole cascade in the transverse plane, and it is therefore interesting to

see how large effects it has on the transverse expansion of the scattering amplitude.

Our main results are presented in section 3. We will see that the confinement mech-

anism is crucial in order to obtain sensible results. This is especially the case when a

running coupling is used. Obviously this is to be expected, as otherwise the cascade evo-

lution favours the formation of too large dipoles. Without confinement the cross section

grows exponentially in Y (defined as Y = ln(s/s0), with s0 ≈1GeV2), as expected from

the long ranged nature of the massless gluon fields.

The leading order cascade evolution is strongly suppressed by the non-leading ef-

fects [6]. Besides the running coupling, the non-leading effects come from the non-singular

terms in the gluon splitting function P (z), and the so-called energy scale terms which are

related to the conservation of p+ and p− respectively [6] (exact energy-momentum conser-

vation goes beyond the NLO corrections, however). Once these effects are included (using

the prescription described in [4]), we see that the growth of the cross section is much re-

duced. Nevertheless, when increasing the energy, one can see that the growth is still faster

than what is permitted by theFM bound. Interestingly, we will in this case see that σtot

can be fitted rather well by a polynomial in Y , for αs = 0.2 and Y up to around 32 units.

As the running coupling is a non-leading effect, it might seem strange that the growth

of the cross section is much faster as compared to the fixed coupling case. This is mainly

due to two reasons. First, the value of αs gets very large during the evolution (especially

in the specific model which we use), signaling the breakdown of the perturbative approach.

Secondly, the total growth is faster due to unrealistically large contributions from larger b.

However, the growth of Ts(b = 0) is actually slower in the running coupling case.

The transverse expansion of the dipole cascade is of course not really consistent with

QCD at distances larger than the confinement scale, since it is driven by Coulomb fields. We

will therefore also study the expansion when confinement effects are modeled by replacing

the Coulomb propagators, 1/kkk2, with screened propagators, 1/(kkk2 + M2). In this case a

ln2s growth is obtained, and the FM bound is thus saturated. We also see that we get

a very sensible result for the coefficient C in (1.1). The fact that C can be estimated

by combining the perturbative growth with nonperturbative initial conditions has been

proposed in [7], although the leading order BFKL result gives a way too large value for C.
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2. The growth of the black disc

Let us consider a hadronic projectile impinging on a hadronic target. The projectile might

here be an elementary colour dipole, and the target a proton or a nucleus. We will from

now on denote the generic scattering amplitude between an arbitrary projectile and an

arbitrary target by TY (bbb). When the initial (at Y = 0) projectile or target is fixed we also

use additional parameters to denote the amplitude. For example if the initial projectile is a

dipole of size r which scatters off an arbitrary target, then we write TY (rrr,bbb). If we have the

scattering of two dipoles r and r0 we instead write TY (rrr,rrr0, bbb). The region in bbb where the

scattering amplitude TY (bbb) satisfies TY (bbb) ≈ 1 is called the black disc region, since in this

case the projectile is strongly absorbed by the target. The region where TY (bbb) ≈ 0 is on the

other hand referred to as the “white” region1 since here the target appears transparent. In

the region between, the scattering is “grey”. Specifically, the black disc region is defined

as the radius of the disc2 within which the average amplitude satisfies

TY (bbb) ≥ a for |bbb| ≤ Rbd(Y ), where a ≈ 0.5. (2.1)

The total cross section can then be estimated as

σtot(Y ) = 2

∫

d2bbb TY (bbb) ∼ 2πR2
bd(Y ), (2.2)

where Rbd(Y ) is the radius of the black disc at rapidity Y . (Obviously Rbd(Y ) is also

dependent on the projectile and the target, but we do not explicitely write this dependence.)

If σtot is to satisfy theFM bound, it is seen that Rbd(Y ) can at most grow linearly with

Y = ln(s/s0). In what follows, we will study the Y dependence for Rbd(Y ) for different

situations, using our model developed in [4 – 6].

2.1 The BFKL growth

The Y dependence of Rbd(Y ) which follows from the solution to the non-linear QCD evo-

lution equations have been discussed in [7 – 10], in the context of the Balitsky-Kovchegov

(BK) equation [1, 11] which is a mean field version of the B-JIMWLK hierarchy. A detal-

ied numerical study of the BK equation with impact parameter dependence was performed

in [12]. These works have demonstrated that the BK equation leads to an exponential

growth of Rbd(Y ), even if one starts with an initial profile in bbb which falls off very steeply.

Using the dipole language, the fast growth of Rbd(Y ) can be understood as follows. Assume

that, for a given dipole projectile of size r, one studies the evolution for b ≡ |bbb| ≫ Rbd(Y ),

where TY (rrr,bbb) ≪ 1. The BK equation can then be replaced by the linear BFKL equation3

whose solution in bbb can be written as

TY (rrr,rrr0, bbb) =

∫

d2bbb′
∫

d2rrr′

2πr′2
nY (rrr′, bbb′, rrr0)T0(rrr,bbb|rrr

′, bbb′), (2.3)

1The white region can be defined as the region where the scattering between a dipole of arbitrary size

and the target is small, i.e. where the local saturation scale Qs(bbb) is smaller than, or the order of, ΛQCD [7].
2The average amplitude is isotropic in the transverse plane. On an event-by-event basis, however, there

is no isotropy.
3Strictly speaking one has to be careful when linearizing the BK equation since there might be contri-

butions to the evolution from inside the black region where the scattering is strong, for details see [7, 8].
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where nY is the dipole density of the target at Y , and T0 is the basic dipole-dipole scattering

amplitude. Here we have assumed that the target initially consists of a single dipole of size

r0. Of course one could imagine more complicated initial conditions for the target, but

as long as the scattering is weak, the precise choice should not matter. The elementary

dipole-dipole scattering amplitude, T0, can be simplified when the separation of the dipoles

are large compared to their sizes (remember that we assume b ≫ Rbd), in which case it

decays as 1/|bbb − bbb′|4. It can then be shown that

TY (rrr,rrr0, bbb) ∼ α2
sr

2nY (r, b, r0)

∼ 32α2
s

log 16b2

r0r

(πc2Y )3/2
exp

(

ωY − log
16b2

r0r
−

log2 16b2

r0r

c2Y

)

. (2.4)

Here ω = 4ln2·αs, c2 = 14ζ(3)ᾱ, and ᾱ ≡ αsNc/π. Omitting constants and the slowly

varying prefactors, we can write

TY (rrr,rrr0, bbb) ∼
r0r

b2
exp

(

ωY −
log2 16b2

r0r

c2Y

)

. (2.5)

Using definition (2.1), it can now easily be seen that this formula implies an exponential

growth for Rbd(Y ), simply because the power-like decay in b, coming from the Coulomb

fields associated with the exchanged gluons, is too slow to compensate for the fast growth

in Y .

2.2 Saturation effects in the cascade evolution

2.2.1 Multiple scatterings and boost invariance

The discussion so far has neglected saturation effects in the dipole cascade evolution. In

the dipole model, unitarization at each bbb is obtained by taking into account multiple dipole

interactions. In an eikonal approximation the multiple scatterings can be summed to all

orders, with the result that T can be written as

TY (bbb) =

〈

1 − exp

(

−
∑

i

∑

j

T0(xxxi, yyyi|uuui, vvvi)

)〉

. (2.6)

Here the brackets denote averaging over different events (notice that it is the event by

event amplitude which exponentiates). The sums over i and j just denote sums over the

dipoles in the individual dipole cascades, and the bbb and Y dependences are implicit in the

right hand side. Thus we explicitely have TY (bbb) ≤ 1 at each bbb. This condition is absolutely

necessary for our discussion, as otherwise it would make no sense to talk about the black

disc limit or the Froissart bound. The Froissart bound determines how rapidly the black

disc can expand in bbb, but if T is not bounded by 1 then there is no black disc limit at all.

Even though one can unitarize T at each bbb, the evolution of the individual dipole

cascades satisfy the linear BFKL equation. Since what appears as multiple scatterings

in one frame will appear as saturation effects in the cascade evolution (i.e. in the onium

wavefunction) in another frame, the formalism is not frame independent. The discussion
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above should therefore be generalized to the case including saturation effects also in the

cascade evolutions. Our results presented below includes such effects, and we therefore

discuss them in this section.

2.2.2 Dipole swing

We have previously argued that one can take into account saturation effects in the dipole

cascade evolution by including the so-called dipole swing into the formalism. We will here

once again discuss the idea behind the swing. An analytical proof for boost invariance

is, however, still lacking. We have therefore so far implemented an approximation in our

Monte Carlo (MC) code (as have been discussed in [5, 6]), and we will at the end of

this section try to sketch the similarities between our implementation and the saturation

mechanism in the CGC formalism.

The generic evolution equations for high energy QCD including all possible pomeron

interactions are not yet known. Equations have, however, been derived for simple toy

models which neglect the complicated topology of the full model [13, 14]. The saturation

mechanism in these simpler models have similarities with the CGC formalism, and they

can also be formulated in a stochastic evolution with similarities to the dipole evolution in

the presence of the dipole swing, as we now explain.

These equations can namely be interpreted in terms of (positive definite) k → k + 1

vertices [15]. The dipole swing (discussed in more detail below) is a process which instan-

taneously in Y replaces two initial dipoles, (x1, y1) and (x2, y2), with two final dipoles,

(x1, y2) and (x2, y1). Here (y)x denotes the transverse position of the (anti-)colour end of

the dipole (here we do not use boldface letters for the vectors). The generic k → k + 1

vertices can then be constructed by combining the usual 1 → 2 dipole splitting with k − 1

instantaneous dipole swings. In the toy models in [13, 14] these vertices give a boost invari-

ant evolution. However, the amount of information we can extract from the toy models is

limited. In QCD it is important to take into account the colour degrees of freedom which

are completely absent in the toy models. The colour structures of the multiple scattering

diagrams were discussed in detail in [15] and we will here again briefly discuss the colour

structures.

The linear cascade evolution is directly related to the leading Nc approximation. The

dipole splitting kernel is proportional to αsNc = ᾱ (for simplicity we here neglect the

factor π in the definition of ᾱ as it is completely irrelevant for our discussion), while the

scattering diagrams are proportional to α2
s = ᾱ2/N2

c . To take into account the effects of

multiple scatterings in all frames one would therefore need to include processes proportional

to ᾱ·ᾱ2n/N2n
c (the first factor of ᾱ comes from the dipole splitting) in the cascade evolution.

In the leading Nc approximation such processes are absent.4 To correctly include saturation

effects in the cascade evolution it is therefore very important that one studies the colour

structures of the relevant Feynman diagrams.

4The reason one includes multiple scatterings is because they are dominant at high energies even if they

are colour suppressed. The contribution from n pomeron exchange goes like enωY as compared to single

pomeron exchange which goes like eωY , where ω is the BFKL intercept.
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z

Figure 1: Two diagrams contributing to interactions within the same cascade as explained in the

text. The dashed line indicates the cut between the amplitude and the comple conjugate amplitude.

α 5

s Nc Nc
3

1 = 
α 5

Nc

2
6α 5

s Nc
4

Nc
3

1 = 
α 5

Nc
4

Figure 2: The respective colour structures of the two diagrams from figure 1.

Let us consider the situation in figure 1. Here we have two right moving dipoles,

(x1, y1) and (x2, y2), and one left moving dipole (u, v). When rapidity is increased by ∆Y ,

the gluon z can be emitted from (x1, y1) (thus we put the evolution into the right moving

system). In the left diagram in figure 1 we show just one of the contributions to this

process. Here z is in the amplitude emitted by the quark located at x1, and is absorbed

in the complex conjugate amplitude by the antiquark located at y1. In addition to this we

have two-gluon exchange between the system consisting of x1, y1 and z, and (x2, y2). In
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the amplitude a gluon is exchanged between the antiquark at y1 and the quark at x2, while

in the complex conjugate amplitude a gluon is exchanged between the antiquark at y1 and

the antiquark at y2. These processes contribute to the evolution of the wavefunction of

the right moving system. In addition, there is a two-gluon exchange between the right and

left moving systems. In the amplitude there is a gluon exchanged between the quark at

x1 and the oppositely moving antiquark at v, and there is again a gluon exchange between

x1 and v in the complex conjugate amplitude. In the right diagram in figure 1, the gluon

exchanged between y1 and y2 in the complex conjugate amplitude is instead exchanged

between x1 and y2.

In figure 2 we show the respective colour structures of the two diagrams from figure 1.

Counting the vertices and the colour loops we see that the left diagram is proportional to

ᾱ5/N4
c . The extra factor 1/N3

c comes from the black dots where we project out the colour

singlet contributions (a dipole is a colour singlet). In the right diagram we can count 2

loops, and the process shown is therefore proportional to ᾱ5/N6
c and thus suppressed as

compared to the left diagram.

These diagrams contribute to processess which can be interpreted as follows. The left

diagram in figure 1 is one of the diagrams which contribute to the process where (x1, y1)

first splits into (x1, z) and (y1, z) by the emission of the gluon z, after which the dipoles

(z, y1) and (x2, y2) exchange a gluon, whereby they are replaced by two new dipoles, (z, y2)

and (x2, y1). Then finally the dipole (x1, z) interacts with the target (u, v). This process

has therefore a dipolar interpretation, and the step where (z, y1) and (x2, y2) are replaced

by (z, y2) and (x2, y1) precisely describes the dipole swing. The right diagram in figure 1

can on the other hand not be described in terms of dipoles. Here a gluon is exchanged

between (z, y1) and (x2, y2) in the amplitude, but in the complex conjugate amplitude a

gluon is instead exchanged between (x1, z) and (x2, y2). However, we also see that this

process is suppressed, since it goes like ᾱ5/N6
c instead of ᾱ5/N4

c .

In case the evolution is put into (u, v), the corresponding diagram to the left diagram

in figure 1 would describe a process where (u, v) splits into (u, z) and (z, v), both of which

then scatter against (x1, y1) and (x2, y2). This is thus a multiple scattering contribution,

referred to as the “fluctuation” contribution in [16]. If one carefully studies all the possible

Feynman graphs, then the following picture appears when dipoles in the same cascade are

allowed to interact. As mentioned above, first one of the dipoles (x1, y1) and (x2, y2) splits

(say (x1, y1)) into two new dipoles. Then one of the two new dipoles swing with (x2, y2),

and two newer dipoles are formed. Thus we have three new dipoles at the end of the

process. Any one of these three dipoles can then interact with (u, v). The 2 → 3 vertex

which involves the swing goes like ᾱ3/N2
c , and is therefore colour suppressed. There are also

terms which cannot be interpreted in terms of dipole interactions. However, these are all

proportional to ᾱ3/N4
c and they can therefore be neglected as compared to the dipole swing

contribution. It was shown in [15] that the colour structures of all the multiple scatterings

diagrams exactly correspond to the colour structures of diagrams which in the evolution of

a dipole cascade can be interpreted in terms of the dipole swing and the k → k +1 vertices

mentioned above. Whether or not one can thereby obtain a boost invariant evolution is,

however, not quite clear. A detailed study trying to attack this problem, and to study the
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structure of the generated evolution equations is under way [17].

Boost invariance (sometimes referred to as the self-duality) of the evolution, and the

generalization of the B-JIMWLK hierarchy, have previously been discussed in a series of

papers [18, 16, 19, 20]. Note, however, that the k → k + 1 vertices mentioned above give

rise to equations more general than the “Pomeron Loop” equations derived in [16, 20] (the

toy model analogy of this has been discussed for example in [14]). As mentioned, it is,

however, not know whether or not one can obtain a boost invariant evolution in the full

model. For example, in [21] it was shown that the higher order corrections arising from

the strong classical fields in the JIMWLK formalism contains quadrupoles, sextupoles and

so on. It may therefore be that one needs to include more complicated colour structures

in a fully consistent formalism.

In the MC implementation of our model [5, 6], each dipole is given one of N2
c possible

colour indices, and only dipoles with the same colour index are allowed to swing.5 Here

the weight for the swing process was chosen so that it favours the formation of smaller

dipoles, which explicitely introduces saturation effects in the cascade evolution as smaller

dipoles both split and interact more weakly. As we discussed in [5] this procedure also

approximates higher order multipoles, which might be needed in a consistent formulation

as mentioned above. The similarity with the CGC formalism can then be explained as

follows. In the CGC, it can be shown that the number density of gluons satisfy [2]

dN

dY d2bbbd2kkk
.

1

αs
(2.7)

due to saturation. If one integrates over rapidity, one rather gets

dN

d2bbbd2kkk
.

1

α2
s

. (2.8)

What happens in the CGC is that one can continue to pack the hadron with more gluons

until there are so many gluons overlapping that their mutual interaction is strong enough

to prevent further occupation at a particular bbb. In a semiclassical picture we can think of

each gluon as a disc of radius ∼ 1/|kkk|. Holding kkk fixed, one will sooner or later reach a

point where it is not possible to put in any more gluons of that kkk. In that case we have

to increase kkk, which corresponds to adding smaller discs into the proton. At one stage

those smaller discs will also fill up the avaliable holes, but there is then more room for

even smaller discs and so on. One can continue in this way forever, with the typical gluon

momenta being pushed to higher values, and the total number of gluons therefore never

ceases to grow.6

The dipole swing works in a very similar way. Since the evolution is driven by the

1 → 2 splitting plus the 2 → 2 swing, the total number of dipoles will continue to grow

forever. Assume, however, that we wish to put many dipoles of similar size rrr around the

same impact parameter bbb. If the number of dipoles is less than N2
c , there are no problems

since the swing is not very likely. However, as soon as we have N2
c dipoles they can start

5The probability that a given colour-anti-colour pair forms a colour singlet is 1/N2
c .

6The production rate of additional gluons does saturate however.
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to swing, and since in this case they almost sit on top of each other, they will do so as soon

as the chance is given (the swing favours the formation of smaller dipoles, and in this case

the swing probability is thus very large [5]). When two dipoles swing they will be replaced

by two smaller dipoles, with different impact parameters bbb′. This implies that the dipole

occupation number satisfies

dN

d2bbbd2rrr
. N2

c ∼
1

α2
s

. (2.9)

Here we assume ᾱ to be fixed and of order 1/π, in which case we get αs ∼ 1/Nc. When

the number of smaller dipoles around bbb′ gets large enough they will in turn start to swing

to produce even smaller dipoles and so on. Thus we get a picture which is similar to that

in the CGC formalism.

The dipole swing suppresses the growth of the cascade in the transverse plane, and it

is interesting to see how large effects it has on the evolution. In the next section we will

therefore present our results with and without the swing. Obviously, we cannot expect

the swing to change the Y dependence of Rbd(Y ) in a qualitative manner, in particular

we cannot expect it to modify an exponential growth, since the associated interactions are

still mediated by massless gluons.

3. Results

We will in this section present the results obtained from our MC simulation for the growth

of Rbd(Y ). Let us first mention that it is extremely difficult to make analytic predictions

as in section 2.1. In our simulations we take into account effects of energy-momentum

conservation, which are related to, but go beyond, the next-to-leading order corrections to

the cascade evolution. As mentioned in the previous section, we also include saturation

effects in the evolution, and the full equations which include these effects are not known

(even in the large Nc limit), and once they are known they will probably be extremely

complicated to solve. Furthermore, analytic estimates can never fully take into account

the full impact parameter dependence of the evolution, which is relevant for the present

study.

The first results we show are for the case of a running coupling, and without any

confinement effects. In order to avoid singularities, the value of αs(p⊥) is frozen below

the scale p⊥ = 2/rmax where rmax is a free parameter which in our full model sets the

confinement scale. In our previous studies [6] we have set rmax = 3.5 GeV−1 which is also

the value we will use in the present study. (ΛQCD is fixed to 0.22 GeV)

In the discussion in section 2.1, we considered the projectile to be an elementary

dipole. Due to the fact that higher Y values are extremely time consuming to simulate,

we will here use a projectile which is more dense initially. We will therefore consider

pp scattering where the initial proton is modeled as consisting of three dipoles (with a

Gaussian distribution in sizes determined by the scale rmax) in a triangular configuration

as was discussed in [5, 6], where the frame independence of the process have also been

demonstrated. We will therefore compute TY (bbb) in the CM frame, since this is numerically

the least time consuming frame.
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Figure 3: The transverse profile of the scattering amplitude T including a running coupling, and

without confinement effects. The left figure excludes the swing while the right figure includes it.

In both figures the lowest curve is calculated at Y = 8, and Y is increased by 2 units for each new

curve. In both cases an exponential growth of Rbd(Y ) is seen. The main mechanism driving the

growth is clearly the very fast growth of the white region.
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Figure 4: The black disc radius Rbd(Y ) plotted as a function of Y , as calculated from figure 3.

The squares correspond to evolution including (lower set), and excluding (upper set) the swing.

Together with each curve, the corresponding fits are also shown.

Our first result are shown in figure 3. Here we plot TY (b) as a function of b (we

average over the angle). We show two plots, including (right plot) and excluding (left

plot) the swing. The lowest curves are calculated at Y = 8, and Y is increased by 2 units

for each new curve. We see very large contributions from large impact parameters, and

the resulting profile is very flat. In this case Rbd(Y ) grows exponentially which can be

seen in figure 4. Here, the upper curve excludes the swing, and we find that Rbd(Y ) can

be fitted as Rbd(Y ) ≈ 1.8·exp(0.15Y )GeV−1. If the dipole swing is included we instead

get Rbd(Y ) ≈ 2.0·exp(0.13Y )GeV−1. Also in the case where we include the swing, we see

that Rbd(Y ) grows very rapidly. As mentioned in the introduction this is partly due to the

breakdown of perturbation theory since the value αs(p⊥) is very large during the evolution,
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Figure 5: The transverse profile of T for onium-onium scattering, without the swing. We again

find a very flat profile, with very large contributions from large b. The lowest curve is calculated at

Y = 12, and Y is increased by 4 units for each new curve.

which is moreover extremely sensitive to the infrared cutoff rmax.

Of course, since in this case the initial dipoles are rather large (with sizes close to

rmax) one is in the soft region already from the beginning. We therefore also study onium-

onium scattering, where the initial onia have small sizes, we take the two cases r0 = 0.5

and 1GeV−1 respectively (both initial onia have the same size). In figure 5 we show the

transverse profile for the case r0 = 1GeV−1. Here we do not include the swing and we once

again find a very flat distribution implying an exponential growth for Rbd(Y ). The result

for the case r0 = 0.5GeV−1 looks essentially the same.

Next we switch to a fixed coupling, αs = 0.2. It is well known that the leading

order dipole cascade also in this case shows a fast diffusion towards large dipole sizes.

In [4] we demonstrated the very large effects of energy-momentum conservation on the

evolution. In this case the production of both small (from p+ conservation) and large

(from p− conservation) dipoles are suppressed, and the growth of the cross section is

severely dampened.

The transverse profile of the scattering amplitude is shown in figure 6. As compared to

figure 3 we see that the growth is significantly reduced. This is because the unrealistically

large contributions from larger b present in the running coupling case are much reduced.

From figure 6 it seems that, for rapidities under Y ≈ 20, the growth is even linear.7

However, as Y increases, we clearly see a deviation from the linear growth, which becomes

greater for the largest Y . Clearly, the FM bound-breaking growth arises not because the

central regions reach the black disc limit too fast, but rather because the white region,

where the scattering is very weak initially, turns grey too fast. This indeed confirms the

expectation that theFM bound is in this case violated due to long range contributions

7In order to see theFM bound-breaking growth sooner, we have here defined Rbd for a = 0.3 in (2.1).

This will of course affect the absolute value of Rbd, but it does not change the fact that Rbd grows more

than linearly with Y .
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Figure 6: The transverse profile of the scattering amplitude for a fixed coupling, αs = 0.2. In

this case the swing is not included. The lowest curve is calculated at Y = 8, and Y is increased by

2 units for each successive curve. Although the growth of Rbd(Y ) seems to be linear for lower Y ,

we can see that the white region grows very fast, implying an increasingly faster growth of Rbd(Y )

as Y increases.
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Figure 7: The black disc radius Rbd(Y ) as a function of Y as calculated from figure 6 (squares).

In this case Rbd(Y ) can be fitted by a polynomial (the dashed line) as explained in the text.

coming from the perturbative Coulomb fields [8]. What is interesting, however, is the fact

that the growth of Rbd(Y ) is much slower than expected from the leading order evolution.

This is clearly illustrated in figure 7. What we see here is that the shape of Rbd(Y ) cannot be

fitted by an exponential, at least for Y up to 32. The growth accelerates as Y increases, so as

Y → ∞ the growth should eventually reach an exponential (indeed the white region already

grows exponentially). For the present values we instead find that the shape can be fitted by

a polynomial, and in figure 7 we show a fit R = (−3.3+0.76·Y −0.02·Y 2+6·10−4 ·Y 3)GeV−1,

which is the best fit we have found. Such a fit would imply a cross section growing like

σtot ∼ln6(s/s0). This growth is further reduced if we include the dipole swing, as we

illustrate in figures 8 and 9. Even if the growth seems to be linear, one can again see that
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Figure 8: The transverse profile for fixed coupling and including the swing. The lowest curve is

calculated at Y = 10 and Y is increased 2 units for each new curve.
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Figure 9: The black disc radius Rbd(Y ) as a function of Y as calculated from figure 8

the white region expands rapidly and the growth of Rbd accelerates as Y increases. The fit

in figure 9 corresponds to a quadratic fit.

In order to satisfy the FM bound we must introduce a scale above which the gluon fields

falls off exponentially. In [6] we replaced the momentum space Coulomb propagators, 1/kkk2,

by screened propagators, 1/(kkk2 + M2), where M = 1/rmax. The dipole splitting kernel, for

the process (xxx,yyy) → (xxx,zzz) + (zzz,yyy), is then modified as

(xxx − yyy)2

(xxx−zzz)2(zzz−yyy)2
→

(

1

rmax

xxx−zzz

|xxx−zzz|
K1(|xxx − zzz|/rmax) −

1

rmax

zzz−yyy

|zzz − yyy|
K1(|zzz − yyy|/rmax)

)2

. (3.1)

Similarly the dipole-dipole scattering amplitude T0(xxx,yyy|uuu,vvv) is modified as

α2
s

2
ln2

{

|xxx − vvv||yyy −uuu|

|xxx − uuu||yyy − vvv|

}

→
α2

s

2

(

K0(|xxx − uuu|/rmax) − K0(|xxx − vvv|/rmax)−

K0(|yyy − uuu|/rmax) + K0(|yyy − vvv|/rmax)

)2

. (3.2)
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Figure 10: The transverse profile of T including confinement effects via equations (3.1) and (3.2).

In the left figure the swing is excluded while it is included in the right figure. The lowest curves are

calculated at Y = 8, and Y is increased by 2 units for each new curve. Here the growth is clearly

linear, and as expected we see that the growth of the white region is considerably suppressed.

Here K0 and K1 are modified Bessel functions which both behave as K(x) ∼
√

2
xe−x for

large x. In the analysis of section 2.1, this would imply an exponentially decaying profile

in bbb, which would compensate the exponential growth in Y of the BFKL solution. The

evolution should then satisfy the FM bound. This has been used in [7] to estimate the

constant C in (1.1) as

C = 2π

(

ω

µ

)2

, (3.3)

where ω was defined in (2.4), and µ is the confinement scale, i.e. r−1
max in our model. The

constant C can thus roughly be determined by combining the hard pomeron intercept with

the non-perturbative confinement scale, albeit in a heuristic fashion.

Recently it has been shown that experimental results on pp collisions favours a ln2s fit

(rather than a lns fit) to the total pp cross section [22]. The fit in [22] has the form

σ ≈ c0 + c1 ln

(

s

2m2

)

+ c2 ln2

(

s

2m2

)

, (3.4)

where we have neglected terms which fall off as a power of s. The various coefficients

above were found to be c0 ≈ 37 mb, c1 ≈ −1.4 mb and c2 ≈ 0.28 mb. In [7], the value

of µ has been argued to be around 2mπ ≈ 0.28 GeV, which interestingly is equal to r−1
max

with rmax = 3.5 GeV−1. In this case the value of (3.3) would be around 9 mb, considerably

higher than c2 above. Of course, the value of (3.3) is not supposed to reproduce c2 since it

has been derived under rather crude assumptions (any attempt to include nonperturbative

effects will admittedly be heuristic as well). It is also a well known fact that the leading

order BFKL exponent ω is too large to fit data. If we would for example replace ω by its

NLO value, ω ≈ 0.3, C would be reduced almost by a factor of 4.

In figure 10 we show the transverse profile of the scattering amplitude, calculated

using (3.1) and (3.2), and using a running coupling. Note that, as compared to figure 6,

the difference now is that the growth of the white region is considerably suppressed, as

expected from confinement. In this case we can see a linear growth, which is illustrated in
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Figure 11: The black disc radius Rbd(Y ) calculated from figure 10 excluding (upper set of squares)

and including (lower set of squares) the swing. Lines represent linear fits to the squares.

figure 11. Here we find that Rbd can be fitted as Rbd(Y ) = (−1.36 + 0.39Y )GeV−1 when

the swing is excluded, and as Rbd(Y ) = (−1.70 + 0.31Y )GeV−1 when it is included. This

would imply a cross section growing as σ ∼ 2π · 0.392 ln2s GeV2 = 0.37·ln2s mb for the

former case, while for the latter case we would have σ ∼ 2π · 0.312 ln2s GeV2 = 0.24·ln2s

mb. The results are indeed quite close to the c2 term in (3.4). We might also ask how good

the approximation σ ∼ 2πR2
bd(Y ) is. The MC results for the transverse profiles in figure 10

can be estimated rather well (for fixed Y ) by simple Gaussians, T = T (0) exp(−c · b2).

Thus, approximating these curves by such functions8 the cross section would be given by

σ1 = 2

∫

d2bbb T (0) exp(−c · b2) =
π

c
T (0). (3.5)

On the other hand, Rbd is defined as T (Rbd) = a with a = O(0.5), and the approximation

σ ∼ 2πR2
bd(Y ) then gives

σ2 =
2π

c
ln

(

T (0)

a

)

. (3.6)

Thus
σ2

σ1

=
2

T (0)
ln

(

T (0)

a

)

. (3.7)

For the Tevatron for example, we have T (0) ≈ 0.7, while in figure 11 we have set a ≈ 0.6.

This would give σ2/σ1 ≈ 0.5. For higher energies where T (0) → 1 we get σ2/σ1 ≈ 1 so

that the approximation σ ∼ 2πR2
bd(Y ) works reasonably well.

Of course we might as well directly calculate the total cross section using the MC, such

as we did in [6]. Thus we can try to fit a curve of the form (3.4) to our results [6] for the

8Given the fact the functions K1 in the kernel (3.1) fall exponentially one might think that an exponential

function would better approximate the b-profile. The good Gaussian approximation is related to our initial

proton model which has a Gaussian distribution [6]. Actually our b-profile has a somewhat longer tail than

a Gaussian for large b due to the fluctuations in the evolution, as was discussed in [6].
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total pp cross section. We thus parameterize the cross section as

σ = A + B lns + C ln2s, (3.8)

where s is measured in units of GeV2. In this case we find the results A = 34 mb, B = −1.8

mb and C = 0.30 mb which are quite close to the values c0, c1 and c2 in (3.4). We also

try a fit σ = D + E ln2s which works equally well, and we find D = 20 mb and E = 0.24

mb. We thus find that the Froissart bound is saturated, and by combining the perturbative

evolution with nonperturbative confinement effects we moreover obtain a value for C which

is consistent with data.

4. Conclusions

We have in this paper studied the growth of the black disc radius Rbd(Y ) for hadronic

collisions, using our model developed in [4 – 6]. Using a purely perturbative approach one

cannot expect theFM bound to be satisfied, and for the running coupling case we indeed

find an exponential growth for Rbd(Y ). On the other hand when a fixed coupling is used we

again find a fast growth of Rbd(Y ), but the growth is in this case not an exponential as in

the running coupling case, but can be fitted by a polynomial (at least for rapidities up to 32

units, corresponding to s ∼ 1014GeV2). This is due to our inclusion of energy-momentum

conservation effects in the evolution, which severely dampens the leading order growth.

However, it can be seen that the white region expands exponentially, which should imply

an exponential growth for Rbd(Y ) eventually. The fact that the running coupling case

shows such a fast growth is because, without any suppression of large dipoles, the coupling

gets very large during the evolution. Moreover, one gets unrealistically large contributions

from large transverse separations.

We model confinement effects by replacing the Coulomb propagators by screened prop-

agators, in which case Rbd(Y ) grows linearly with Y , implying that theFM bound is actually

saturated. Furthermore, including saturation effects during the cascade evolution, we see

that we obtain a value for the coefficient C in (1.1) which is consistent with data.

Obviously, our specific model used here makes sense only when including nonpertur-

bative effects since the initial dipoles in the proton are quite large. However, also in the

case where we start from a, smaller, single dipole did we see a very fast growth. It is also

interesting to see what would happen if one starts with a system containing perturbative

dipoles, which is at the same time quite dense. Then we would expect saturation to slow

down the evolution, although we will of course still get an exponential growth if no confine-

ment effects are included. An interesting initial model is a proton consisting of three “hot

spots”, i.e. three saturated spots inside the proton. This model was discussed in [9]. The

sizes of these spots, related to the scale of chiral symmetry breaking, is estimated to be

around 0.3 fm. Thus one may at least initially neglect confinement effects for the evolution

of each spot.

To test the sensitivity of our model to the initial assumptions, we have also tried a

model where the proton initially consists of 6 dipoles in 3 spots (2 dipoles in each spot),

where each spot has a size around 0.3 fm. Including the swing, and with a running coupling
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and no confinement effects, we again find a very fast growth of σtot. For spot sizes of around

0.3 fm, we find that the cross section shows a s0.21 behaviour.

Finally, when confinement is included we find that a fit D + E·ln2s gives, E ≈ 0.31mb

which is higher than the result 0.24 mb found above. However, we should mention that

this initial model also reproduces the avaliable high energy data rather well. Furthermore

we also get good results, as in [6], for the diffractive and elastic cross sections, both in pp

collisions and in DIS. To the accuracy of our model, we also get a reasonable description

of data also with such an initial model.
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